Press Releases

Defects help nanomaterial soak up more pollutant in less time



Rice U. researchers find new way to remove PFOS from industrial wastewater


Mike Wong and Chelsea Clark at Rice Mike Wong and Chelsea Clark (Photo by Jeff Fitlow/Rice University)
By riceuniversity | March 13, 2019

HOUSTON — (March 13, 2019) — Cleaning pollutants from water with a defective filter sounds like a non-starter, but a recent study by chemical engineers at Rice University found that the right-sized defects helped a molecular sieve soak up more perfluorooctanesulfonic acid (PFOS) in less time.
In a study in the American Chemical Society journal ACS Sustainable Chemistry and Engineering, Rice University researchers Michael Wong, Chelsea Clark and colleagues showed that a highly porous, Swiss cheese-like nanomaterial called a metal-organic framework (MOF) was faster at soaking up PFOS from polluted water, and that it could hold more PFOS, when additional nanometer-sized holes (“defects”) were built into the MOF.
PFOS was used for decades in consumer products like stain-resistant fabrics and is the best-known member of a family of toxic chemicals called “per- and polyfluoroalkyl substances” (PFAS), which the Environmental Protection Agency (EPA) describes as “very persistent in the environment and in the human body — meaning they don’t break down and they can accumulate over time.”
Wong, professor and chair of Rice’s Department of Chemical and Biomolecular Engineering and a professor of chemistry, said, “We are taking a step in the right direction toward developing materials that can effectively treat industrial wastewaters in the parts-per-billion and parts-per-million level of total PFAS contamination, which is very difficult to do using current technologies like granular activated carbon or activated sludge-based systems.”
Wong said MOFs, three-dimensional structures that self-assemble when metal ions interact with organic molecules called linkers, seemed like good candidates for PFAS remediation because they are highly porous and have been used to absorb and hold significant amounts of specific target molecules in previous applications. Some MOFs, for example, have a surface area larger than a football field per gram, and more than 20,000 kinds of MOFs are documented. In addition, chemists can tune MOF properties — varying their structure, pore sizes and functions — by tinkering with the synthesis, or chemical recipe that produces them.
Such was the case with Rice’s PFAS sorbent. Clark, a graduate student in Wong’s Catalysis and Nanomaterials Laboratory, began with a well-characterized MOF called UiO-66, and conducted dozens of experiments to see how various concentrations of hydrochloric acid changed the properties of the final product. She found she could introduce structural defects of various sizes with the method — like making Swiss cheese with extra-big holes.
“The large-pore defects are essentially their own sites for PFOS adsorption via hydrophobic interactions,” Clark said. “They improve the adsorption behavior by increasing the space for the PFOS molecules.”
Clark tested variants of UiO-66 with different sizes and amounts of defects to determine which variety soaked up the most PFAS from heavily polluted water in the least amount of time.
“We believe that introducing random, large-pore defects while simultaneously maintaining the majority of the porous structure played a large role in improving the adsorption capacity of the MOF,” she said. “This also maintained the fast adsorption kinetics, which is very important for wastewater remediation applications where contact times are short.”
Wong said the study’s focus on industrial concentrations of PFAS sets it apart from most previously published work, which has focused on cleaning polluted drinking water to meet the current federal standards of 70 parts per trillion. While treatment technologies like activated carbon and ion exchange resins can be effective for cleaning low-level concentrations of PFAS from drinking water, they are far less effective for treating high-concentration industrial waste.
Although PFAS use has been heavily restricted by international treaty since 2009, the chemicals are still used in semiconductor manufacturing and chrome plating, where wastewater can contain as much as one gram of PFAS per liter of water, or about 14 billion times the current EPA limit for safe drinking water.
“In general for carbon-based materials and ion-exchange resins, there is a trade-off between adsorption capacity and adsorption rate as you increase the pore size of the material,” Wong said. “In other words, the more PFAS a material can soak up and trap, the longer it takes to fill up. In addition, carbon-based materials have been shown to be mostly ineffective at removing shorter-chain PFASs from wastewater.
“We found that our material combines high-capacity and fast-adsorption kinetics and also is effective for both long- and short-chain perfluoroalkyl sulfonates,” he said.
Wong said it’s difficult to beat carbon-based materials in terms of cost because activated carbon has been a mainstay for environmental filtration for decades.
“But it’s possible if MOFs become produced on a large-enough scale,” he said. “There are a few companies looking into commercial-scale production of UiO-66, which is one reason we chose to work with it in this study.”
Additional co-authors include Kimberly Heck and Camilah Powell, both of Rice. The research was supported by the National Science Foundation (NSF) Graduate Research Fellowship Program and by the NSF’s Nanosystems Engineering Research Center on Nanotechnology-Enabled Water Treatment (NEWT). Based at Rice, NEWT is a multi-institutional effort launched in 2015 to develop compact, mobile, off-grid water-treatment systems that can provide clean water to millions of people and make U.S. energy production more sustainable and cost-effective.




Social Posts

profile_image

Veterans Affairs

@DeptVetAffairs

RAPID CITY, SD: World War II Veterans from across the Black Hills gather for annual luncheon https://t.co/XsO0DewfB1 via @NewsCenter1

4 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Connecticut: West Haven Memorial Day parade to be led by Vietnam Veteran https://t.co/Fu8JWSJP6l via @nhregister

6 hours ago
profile_image

UTHealth

@UTHealth

RT @FOX26Houston: UTHealth preps for approaching hurricane season https://t.co/Pk4HLVM4ny https://t.co/QoNMZxmcID

7 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Today we honor Navy SEAL Veteran Scott Wirtz in remembrance of his service and sacrifice for our country. https://t.co/rkkOXObR3P #VeteranOfTheDay #CarryTheLoad #NoVeteranEverDies

8 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

10% of patients are admitted to MD Anderson with #pneumonia. Our @ScottEvansMD is working to protect #cancer patients from this and other lung diseases with a new aerosol treatment: https://t.co/Pbn9mjV7FT @CancerFrontline #endcancer

8 hours ago
profile_image

Memorial Hermann

@memorialhermann

@obstudiotexas We appreciate your feedback and have shared your concern with the appropriate contact person.

8 hours ago
profile_image

University of Houston

@UHouston

RT @UHpres: After beating Texas A&M, Cougar Softball beats Sam Houston...will play winner of UT/TAMU tomorrow at chance to win out Texas Re…

9 hours ago
profile_image

University of Houston

@UHouston

RT @UHCougarSB: BALL GAMEEEEE!!!!!!!! @presbell17 retires the side in order and completes the shutout victory!!#hoUSton #GoCoogs https://…

9 hours ago
profile_image

University of Houston

@UHouston

RT @NCAAsoftball: The Coogs are heading to the Regional Finals for the first time since 2011! @UHCougarSB blanks Sam Houston State, 5-0, an…

9 hours ago
profile_image

BCMHouston

@bcmhouston

Help give hope to patients against end-stage illnesses by investing in cancer research. Learn how you can help: https://t.co/4T5JCqKmZm #giving https://t.co/vFmZoE73jN

9 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

“We’re exploring the tremendous opportunities to understand the immune system and turn it against #prostatecancer tumors,” says our Dr. Filippo Giancotti. #pcsm #CancerMoonshot #endcancer https://t.co/kSvhY7RLR6

10 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

Congratulations to this year’s @MDA_UTHGrad graduates! We are proud of all that you’ve accomplished and look forward to seeing all that you do to #endcancer and advance the biomedical sciences in the years ahead. https://t.co/lWYhJk3zLd

11 hours ago
profile_image

CHI St. Luke's Health

@CHI_StLukes

Cramps, bloating, mood swings... #PMS can be a pain, so check out some of our favorite tips for easing the discomfort: https://t.co/kRYPi3shyx #NWHW #WomensHealthWeek https://t.co/9FYXvDjXtD

11 hours ago
profile_image

Rice University

@RiceUniversity

Tiny object, BIG project. How a Rice photographer captured the perfect shot for the cover of @sciencemagazine: https://t.co/lvgpYNfXLm https://t.co/5sPrElM1Lw

11 hours ago
profile_image

Harris Health System

@harrishealth

LBJ Hospital celebrated #NationalHospitalWeek with an ice cream sundae bar, popcorn, photo booth day and salsa tasting contest. https://t.co/9slCsNDHM3

13 hours ago