Innovation

Solutions: Targeting T-cells

A Houston Methodist team has identified the molecules in T-cells that control function


By Christine Hall | May 2, 2018

Houston Methodist Hospital researchers have discovered a way to activate certain T-cells to potentially prevent autoimmune diseases and organ transplant rejection.

T-cells are a type of white blood cell that play a central role in protecting the body from infection and transplant rejection.

Wenhao Chen, M.D., Ph.D., a scientist in the Immunobiology and Transplant Science Center at the Houston Methodist Research Institute, has been investigating T-cell biology for the past 20 years.

Recently, he and colleagues from Houston Methodist and Union Hospital at Huazhong University of Science and Technology in China identified the molecules in T-cells that control function and found a way to target them to help treat infection and disease.

“T-cells are important, so if you know the basic biology—how they are activated and how they function in different models—you can begin to solve those issues,” Chen said.

All About T-cells

T-cells are different from other cells in that they want to protect the body, Chen explained. Because T-cells are antigen-specific, not all will respond to a particular toxic or foreign substance. Yet a very small number of T-cells will recognize a foreign substance, can be activated and expanded in just days to respond to it.

The T-cell receptor or TCR sends its activation signal to T-cells and induces the expression of hundreds of genes and molecules that allow T-cells to either attack transplants or fight infection. A positive result occurs when the T-cells get rid of infected cells; a negative result occurs when the T-cells reject transplanted tissues.

Chen and his team hypothesized that if they could identify the molecular targets in activated T-cells, they could inhibit the function of the activated T-cells exclusively—leaving other parts of the immune system or body tissues undisturbed.

“So, we tried to hunt for molecular targets in activated T-cells downstream of the TCR signal,” Chen said. “If we can delete such targets in the activated T-cells, or make activated T-cells dysfunctional, we can solve the issue of autoimmunity and transplant rejection.”

That could provide a new treatment option for organ transplant acceptance. The current therapy is medication that targets non-selective pathways to T-cells as well as other body cells. Long-term transplant survival is limited by the side effects of this medication.

Related: Lungs in a Box

By systematically deleting different molecules in T-cells, Chen’s team was able to determine which ones were necessary for the T-cells to function.

The researchers also were able to identify what Chen called the “master regulator” of T-cell function—a critical switch that controls T-cell function and dysfunction—and a pathway to target those actions.

The function controlling gene expression in T-cells is the transcription factor or messaging system called interferon regulatory factor 4, or IRF4—which is usually only found in the immune system and not expressed in other cells.

Chen said IRF4, which is only activated with the TCR signals, is what needs to be targeted to solve the problem of transplant rejection or autoimmunity issues.

“We found, on one of the molecules, IRF4, if you deleted it after the TCR signaling, the T-cells will become dysfunctional,” Chen said. “That is important and surprising, because why is it only one of the molecules downstream of TCR signaling that connects to the whole T-cell function?”

Next Steps

The advantage of this new method, versus the current drug therapy, is that it targets only active T-cells that were already exposed to antigens, leaving naïve T-cells—those that have never seen antigens and produce no or little IRF4—alone.

The team found that by inhibiting IRF4 expression for 30 days, the typical timeframe required for transplant patients to remain infection-free, the T-cells became irreversibly dysfunctional and did not try to attack the transplanted organ. In practice, this could mean prolonging a patient’s ability to tolerate a life-saving implant.

The team’s findings were published in the Dec. 19 issue of Immunity, a medical journal. The researchers proved the principle that inhibiting IRF4 expression is possible by identifying the signal pathways that induce the IRF4 in T-cells.

“This will be huge because it isn’t just one response that you can control,” Chen said. “I was surprised that one molecule knocked out in T-cells could, 100 percent, prevent their function. Why IRF4 is the only molecule that I have found so far that can make the functional gene switch is what we still have to figure out.”

RelatedTiny Valves for Tiny Bodies




Social Posts

profile_image

BCMHouston

@bcmhouston

RT @WebsEdge_Health: ASHG TV sat down with Brendan Lee, Professor & Chairman, Dept. of Molecular & Human #Genetics @bcmhouston to learn mor…

42 mins ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

“One of the important questions we want to answer is ‘Why don’t these work better?’”@AnnKloppMD explains how our HPV-Related Cancers Moon Shot is working to overcome barriers using #immunotherapy: https://t.co/kL6uLPuGFj @CancerFrontline #CancerMoonshot #endcancer

56 mins ago
profile_image

Texas Children's

@TexasChildrens

Join us for the "Grill Your Ace Off" event this Saturday, October 19 with Cypress @AceHardware! Proceeds benefit @CMNHospitals: https://t.co/UeNuaDzp9h

60 mins ago
profile_image

Rice University

@RiceUniversity

A new technique developed by Rice bioscientists has allowed them to make the most comprehensive analysis yet of signaling pathways that drive patterning of human ectoderm.Read more: https://t.co/fmCDuInplI https://t.co/6iBO8MfaCI

1 hour ago
profile_image

University of Houston

@UHouston

RT @GetInvolvedUH: Join us for InfraRED: Spooktacular TONIGHT from 7:00-10:00PM in the Student Centers Houston Room. This year’s activities…

1 hour ago
profile_image

University of Houston

@UHouston

RT @UHoustonLib: .@UH_Arch_Art_Lib is pleased to host an opening reception for student artist Morgan Stahl on November 8https://t.co/Eq2V…

1 hour ago
profile_image

Veterans Affairs

@DeptVetAffairs

Veterans getting better care through partnerships, says VA secretary https://t.co/j29GiiYZSQ via #VAntagePoint

2 hours ago
profile_image

BCMHouston

@bcmhouston

Mark your calendars for @BCMCancerCenter’s Lights Out, Cancer event happening Feb. 8. To learn more about this event or how you could participate even if you can't attend, please visit: https://t.co/DcJyiczUvu #BCMLightsOutCancer #BCMLOC https://t.co/uwVfAQxgcO

2 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

Finding your way around one of the largest cancer centers in the world can be daunting. Here’s how our patient escorts can help: https://t.co/e1w2DxY0VX #endcancer

2 hours ago
profile_image

BCMHouston

@bcmhouston

How has rapidly changing technology affected medical education? Resonance, our student-run podcast, takes a look in their latest episode. https://t.co/Wrg2qSosMm #BCMResonance #podcasts #education

2 hours ago
profile_image

TexasHeartInstitute

@Texas_Heart

"The circulatory system’s response to panic...a pounding feeling in the head or chest and/or prompt feelings of lightheadedness or dizziness, according to the Texas Heart Institute. https://t.co/yfBHBgwHuC @Texas_Heart

2 hours ago
profile_image

Rice University

@RiceUniversity

RT @RiceArch: This week's episode of the Rice Architecture podcast Tête-à-Tête features a conversation with student Ethan Chan about the Ri…

3 hours ago
profile_image

Rice University

@RiceUniversity

RT @RiceVolleyball: PREVIEW: No. 1️⃣ 9️⃣ Owls head to Marshall, LA Tech this weekend.📰 » https://t.co/4mJMTaXB3i#GoOwls👐 x #RFND

3 hours ago
profile_image

Harris Health System

@harrishealth

Happy #HealthcareSecurityWeek to our amazing Department of Public Safety team! Thanks for keeping staff and patients safe. https://t.co/Nu9OELntVs

3 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

CAR T-cell therapy side effects in #lymphoma patients can include: -flu-like symptoms -confusion -irritability Here’s what to know from our Dr. Felipe Samaniego: https://t.co/8JyOI2mv5f #CART #endcancer https://t.co/d09u8YdaLN

3 hours ago