Innovation

New light switches for neurons advance brain research


Approved photo for Science news release
By uthealthhouston | July 1, 2015

Light switches for neurons have made enormous contributions to brain research by giving investigators access to “on switches” for brain cells. But, finding “off switches” has been much more challenging.

Addressing the challenge, biochemists in the Center for Membrane Biology at The University of Texas Health Science Center at Houston (UTHealth) discovered a new family of light-activated proteins that work as “off switches.” Their study in Science online is titled “Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics.”

“These new light-gated channels dramatically increase the precision with which scientists can manipulate neurons,” said John L. Spudich, Ph.D., the study’s senior author and a professor in the Department of Biochemistry and Molecular Biology at UTHealth Medical School.

Optogenetics is a rapidly developing research field and traces its origins in part to the discovery of light-activated algal proteins controlling membrane electrical properties by Spudich and co-workers Oleg A. Sineshchekov, Ph.D. and Kwang-Hwan Jung, Ph.D., in 2002.

“John’s earlier work on light-activated channelrhodopsins provided the foundation for optogenetics, a technological development that has revolutionized neurobiology. His Science paper describes a newly discovered and more sophisticated channelrhodopsin that the neurobiology community can add to their optogenetics toolbox,” said Rodney E. Kellems, Ph.D., professor and chairman of the Department of Biochemistry and Molecular Biology at UTHealth Medical School.

Optogenetics is based on genetic targeting to make cells controllable with light. The technology is being used in animal models to understand brain circuits and their roles in brain functions and neurological diseases. By pointing a light, researchers can activate brain cells and map their connections with other brain cells and study the physiological functions they perform.

“Being able to reversibly silence neurons is just as important as turning them on,” Spudich points out. “In this work, we report the discovery of new rhodopsins in algae that function as fast and efficient light-gated channels for anions, just what is needed for controlled neural inhibition.”

Spudich said, “The reasons for our excitement are that in addition to exhibiting a function previously unknown to occur in nature, anion channel rhodopsins (ACRs) have a potential transformative place in optogenetics for light-induced neural silencing.”

Spudich believes these new molecular tools will have an immediate impact on brain research and clinical implications down the line.

He said the ACRs enable millisecond control of neuron spiking and require only a fraction of the light currently used to control brain cells, enabling experiments not previously possible and light delivery deeper into the brain.

“Dr. Spudich and his team’s seminal discovery of anion channelrhodopsins completes the basic optogenetics toolbox by providing highly efficient neural silencers to complement the cation channel rhodopsin neural activators,” said Zheng (Jake) Chen, Ph.D., assistant professor in the Department of Biochemistry and Molecular Biology at UTHealth Medical School.

“Their discovery gives us uniquely powerful tools to switch on and off specific brain regions with unprecedented ease and resolution, and my lab is very eager to apply this strategy to interrogate the central clock control of energy metabolism such as satiety and thermogenesis,” he said.

Valentin Dragoi, Ph.D., professor in the Department of Neurobiology and Anatomy and holder of the Levit Family Professorship in the Neurosciences at UTHealth Medical School, said, “The new powerful tool developed by Dr. Spudich and colleagues will be invaluable for probing neural circuits in animal models, finally allowing physiologists to manipulate the neural machinery that drive cognitive processes.”

As for possible patient treatments, ACRs could potentially be used to treat seizures associated with epilepsy, Parkinson’s disease, chronic pain and other neurological disorders caused by the over-spiking of neurons. “By targeting ACRs to specific neural cell types, we could use light to attenuate the firing rate to normal levels,” Spudich said. “The potential use of ACRs in clinical optogenetics also extends to overactive cardiomyocytes occurring in heart disorders.”

Spudich’s UTHealth co-authors include lead author Elena G. Govorunova, Ph.D., and Sineshchekov in the Department of Biochemistry and Molecular Biology and Roger Janz, Ph.D., and Xiaoqin Liu, M.D., Ph.D., of the Department of Neurobiology and Anatomy.

Spudich, Janz, Kellems, Chen and Dragoi are also on the faculty of The University of Texas Graduate School of Biomedical Sciences at Houston. A joint professor of microbiology and molecular genetics, Spudich is the Robert A. Welch Distinguished Chair in Chemistry and director of the Center for Membrane Biology at UTHealth.

Research described in the Science paper was supported by National Institutes of Health grants (R01GM027750, R21MH098288 and S10RR022531), a UTHealth Brain Initiative grant, the Hermann Eye Fund and endowed chair AU-0009 from the Robert A. Welch Foundation.




Social Posts

profile_image

BCMHouston

@bcmhouston

With over 550 cases this year in the US alone, experts say to expect even more measles outbreaks in the coming years. https://t.co/0P6XRS2jEL #measles

22 mins ago
profile_image

UTHealth

@UTHealth

RT @jvalenza: .@UTSDhouston will be there! #WeAreUTSD https://t.co/QTx97NBcKa

32 mins ago
profile_image

University of Houston

@UHouston

Whose House?😎 https://t.co/jZ8n1blIkO

34 mins ago
profile_image

Rice University

@RiceUniversity

Engineering students designed a small, foldable epinephrine delivery device called EpiWear to keep emergency medication on hand at all times. https://t.co/67Evu3tMjy https://t.co/kCkkn876jM

1 hour ago
profile_image

CHI St. Luke's Health

@CHI_StLukes

"I was having difficulty sleeping and was barely able to get through a conversation because of my GERD." Read how Spencer Stone was able to get relief: https://t.co/hXLUw8qb0x https://t.co/u4foGsW02d

1 hour ago
profile_image

TexasHeartInstitute

@Texas_Heart

RT @MyPlate: Get outdoors with your kids & grown a garden filled with colorful veggies. Celebrating National #GardenMonth is an activity en…

2 hours ago
profile_image

UTHealth

@UTHealth

RT @UTHpromotion: Save the date! Next John P. McGovern Lecture Series in #HealthPromotion "Life on Purpose: How Living for What Matters Mos…

2 hours ago
profile_image

Harris Health System

@harrishealth

What you should know about #shingles. If you’ve had chickenpox before, then you’re at risk of developing a painful rash called shingles. In fact, one out of three people in the United States will develop shingles at some point in their life. https://t.co/6xydnF83kE https://t.co/cRz4J37rxx

2 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Packers Tailgate Tour stops at Tomah VA Medical Center https://t.co/0xIX5V1h4Z via @WXOW

2 hours ago
profile_image

TexasHeartInstitute

@Texas_Heart

Cardiology Grand Rounds tomorrow at noon – Samin K. Sharma, MD, @MountSinaiNYC “Current Status of Management of Stable CAD: Medicine Only, PCI or CABG?” Live webcast & credit details: https://t.co/4P1PB5zY2m https://t.co/JARtnotecg

2 hours ago
profile_image

BCMHouston

@bcmhouston

How does space impact the human body? Find out in this year-long study of identical twin astronauts. https://t.co/aKGG6t55R8 #spacehealth #spacemedicine

2 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Marine Veteran crawls on his hands and knees to finish the Boston Marathon https://t.co/TNnNnEAWJg #VeteransInTheNews #VAntagePoint

3 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

@ReelLungsOfHope @ShipleyDeb We're so sorry to hear this. You're in our thoughts.

3 hours ago
profile_image

TAMU Health Sciences

@TAMHSC

The @TAMUmedicine is studying how communication—and miscommunication—between neurons can influence everything from learning and memory, to drug addiction and #autism. https://t.co/wrxnhvzgLA #NationalAutismAwarenessMonth #TAMUHealth https://t.co/agHsSpU4gM

3 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

“@MAOnstad saved my life. If it hadn’t been for her, I would’ve been treated for the wrong type of cancer,” says stage III #uterinecancer survivor Tralisa Woods: https://t.co/Rel0VdY1oD #gynsm #endcancer

3 hours ago