Press Releases

Rice U. pursues end game for diabetes


Screen Shot 2018-10-08 at 11.18.03 AM Members of Rice’s Veiseh Lab from left: Siavash Parkhideh, Alen Trubelja, Samira Aghlara-Fotovat, Sudip Mukherjee, Omid Veiseh, Maria Ruocco, Christian Schreib and Michael Doerfert. (Photo by Jeff Fitlow, Rice University)
By riceuniversity | October 8, 2018

The National Institutes of Health backs a Rice University lab’s efforts to develop implantable “drug factories” that monitor blood glucose and release insulin on demand for patients with diabetes.

Rice University bioengineer Omid Veiseh ultimately wants patients with Type 1 diabetes to forget about it.

That’s the goal his lab has declared with funding support from the National Institutes of Health. The agency has awarded Veiseh’s lab a prestigious four-year, $2.8 million R01 grant to design hydrogel-encapsulated cells that, when placed into a patient, sense blood glucose levels and produce insulin on demand.

These on-board drug factories would eliminate the need for patients to persistently monitor their blood glucose and administer insulin shots.

“Our hope is that one day patients can be insulin-independent and not have to think about diabetes,” said Veiseh, an assistant professor of bioengineering who joined Rice in 2017. “We want to get to the point where they get the treatment and live their lives normally.”

Type 1 diabetes is an autoimmune disease, where the body’s own immune system inadvertently destroys the insulin-producing beta cells of the pancreas. Replacing the beta cells with protection from the immune system is a potential cure for many patients afflicted with this disease, Veiseh said.

To that end, his lab at Rice’s BioScience Research Collaborative is developing thousands of distinct hydrogel capsules that can protect and support pancreatic islet cells. A major challenge is developing hydrogel formulations which can hide these cells from the host immune system.

The lab’s solution involves the synthesis of 7,000 variations of hydrogels, each carrying islet cells and an individual bar code. These will allow the lab to inject multiple types of hydrogels into a small number of mice for in vivo testing.  (In vivo tests are conducted in live organisms; in vitro experiments are conducted in test tubes and the like.)

“We can’t do this in vitro, only in vivo, but it would take an army to test thousands of individual animals,” Veiseh said. Using the innovative bar coding technique, batches of different cell/capsule combinations can be implanted and those that survive the animal’s immune system can be identified based on their bar codes.

The codes themselves represent a unique approach, he said. Rather than physically marking each cell – hard to do in a jelly – or using chemical means that could induce an immune response, the researchers will encase surrogate cells along with the islet cells.

These surrogates are human umbilical vein endothelial cells. Because they’re culled from thousands of donated umbilical cords and have their donors’ distinct genomes, they can be easily identified through next-generation sequencing. That will let the lab drastically cut the amount of time it will take to test all of its variants.

“That’s going to be the first pass, and it will allow us to whittle down those 7,000 formulations to a manageable number,” Veiseh said. “Once we discover new leads, we will test those more rigorously to evaluate their ability to house and protect islet cells, and the cells’ ability to survive and correct blood glucose.” The capsules will also have to ward off fibrosis, the body’s tendency to wall off invading cells by building scar tissue.

Veiseh has been developing novel materials that enable cell-based therapies for close to a decade. He’s a co-founder of Sigilon Therapeutics, a biotech company working to commercialize this approach for treatment of various chronic diseases. He noted the development of implantable, drug-making cells is one of this year’s 10 “breakthrough” technologies listed by the World Economic Forum.

While some approaches require occasional or even frequent cell injections, Veiseh’s clear goal is to solve the complex management of diabetes for patients once and for all.

“When I started my postdoctoral research (at the Massachusetts Institute of Technology), I had a misperception that diabetes was not that big of a problem because we have insulin. But when I realized the challenges people face, particularly children, I was really inspired,” he said. “My team and I are committed to making a transformative impact for patients.”




Social Posts

profile_image

University of Houston

@UHouston

RT @UHCougars: .@UHouston students! There is still 🕐 to claim your 🎟🎟!👇🏽😃👇🏽 https://t.co/i2JBnD3iIT

3 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Crawford Co. launching bus service to Dublin VA for veterans https://t.co/0BKD1Mkf4F via @13WMAZNEWS

5 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

@grandma_hockey Hi, Annie, we’re so sorry to hear this. Unfortunately, we can’t answer this via Twitter. Please contact our health information specialists at 1-877-632-6789.

5 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

How to help a loved one with #cancer through the #holidayseason: https://t.co/5ejIGWFy74 #endcancer

6 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Charles George VA Medical Center Celebrates 100 Years https://t.co/ZpkEYKo0p7

7 hours ago
profile_image

BCMHouston

@bcmhouston

When it was written in 1818, author Mary Shelley probably didn't realize her classic novel Frankenstein would reflect issues found in health care today. Dr. Andrew Childress explains: https://t.co/9AGXTEqjFM #ethics

7 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

New VA Secretary offers more support for Hawaii’s efforts to care for military veterans https://t.co/FJWL2DrzJu via @HawaiiNewsNow

8 hours ago
profile_image

University of Houston

@UHouston

RT @RealJoshReddick: @UHouston I 👀 some graduates... congrats!!! 🎉

11 hours ago
profile_image

BCMHouston

@bcmhouston

Congratulations to Drs. Mary Estes, Bert O'Malley and Huda Zoghbi on becoming fellows of the @AcadofInventors. https://t.co/pQak8WOYA7 #NAITI

11 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

RT @Aiims1742: Startling numbers on the current & projected burden of HPV associated oropharyngeal cancer in US men, courtesy of Dr. Maura…

11 hours ago
profile_image

CHI St. Luke's Health

@CHI_StLukes

Our team at CHI St. Luke’s Health–The Woodlands Hospital is filling our halls with Christmas cheer! Each department has decorated a Christmas tree that will decorate our first floor lobby before being donated to a family in need in The Woodlands. https://t.co/8aJw0jNHEw

13 hours ago
profile_image

BCMHouston

@bcmhouston

Drs. Mauro Costa-Mattioli and Martina Sgritta talks to @BCMFromtheLabs about their discovery of a microbe-based treatment that reverses social deficits in mouse models of autism. https://t.co/kWziC910Ai #autism

13 hours ago
profile_image

Rice University

@RiceUniversity

@clairecast_ @RiceUNews Congrats! We are so excited to welcome you to the family!

14 hours ago
profile_image

Rice University

@RiceUniversity

@karenkarrot Yay! Congrats!!!! Can’t wait to welcome you to the family!

14 hours ago
profile_image

Rice University

@RiceUniversity

@kebrady2003 Congrats!!! So excited to welcome you to the family! 🦉💙

14 hours ago