Research

Rice team designs lens-free fluorescent microscope

FlatScope may be the world's tiniest, lightest microscope for biological applications and beyond


0305_FLATSCOPE-1-WEB
By Mike Williams | March 07, 2018

Lenses are no longer necessary for some microscopes, according to Rice University engineers developing FlatScope, a thin fluorescent microscope whose abilities promise to surpass those of old-school devices.

A paper in Science Advances by Rice engineers Ashok Veeraraghavan, Jacob Robinson, Richard Baraniuk and their labs describes a wide-field microscope thinner than a credit card, small enough to sit on a fingertip and capable of micrometer resolution over a volume of several cubic millimeters.

FlatScope eliminates the tradeoff that hinders traditional microscopes in which arrays of lenses can either gather less light from a large field of view or gather more light from a smaller field.

The Rice team began developing the device as part of a federal initiative by the Defense Advanced Research Projects Agency as an implantable, high-resolution neural interface. But the device’s potential is much greater. The researchers claim FlatScope, an advance on the labs’ earlier FlatCam, could be used as an implantable endoscope, a large-area imager or a flexible microscope.

“We think of this as amping up FlatCam so it can solve even bigger problems,” Baraniuk said.

Traditional fluorescent microscopes are essential tools in biology. They pick up fluorescent signals from particles inserted into cells and tissues that are illuminated with specific wavelengths of light. The technique allows scientists to probe and track biological agents with nanometer-scale resolution.

But like all traditional microscopes, telescopes and cameras, their resolution depends on the size of their lenses, which can be large and heavy and limit their use in biological applications.

The Rice team takes a different approach. It uses the same charge-coupled device (CCD) chips found in all electronic cameras to capture incoming light, but the comparisons stop there. Like the FlatCam project that inspired it, FlatScope’s field of view equals the size of the CCD sensor, which can be as large or as small as required. It’s flat because it replaces the array of lenses in a traditional microscope with a custom amplitude mask.

This mask, which resembles a bar code, sits directly in front of the CCD. Light that comes through the mask and hits the sensor becomes data that a computer program interprets to produce images.

The algorithm can focus on any part of the three-dimensional data the scope captures and produce images of objects smaller than a micron anywhere in the field.

That resolution is what makes the device a microscope, Robinson said. “A camera in your mobile phone or DSLR typically gets on the order of 100-micron resolution,” he said. “When you take a macro photo, the resolution is about 20 to 50 microns.

“I think of a microscope as something that allows you to image things on the micron scale,” he said. “That means things that are smaller than the diameter of a human hair, like cells, parts of cells or the fine structure of fibers.”

Achieving that resolution required modifications to the FlatCam mask to further cut the amount of light that reaches the sensor as well as a rewrite of their software, Robinson said. “It wasn’t as trivial as simply applying the FlatCam algorithm to the same techniques we used to image things that are far away,” he said.

The mask is akin to the aperture in a lensed camera that focuses light onto the sensor, but it’s only a few hundred micrometers from the sensor and allows only a fraction of the available light to get through, limiting the amount of data to simplify processing.

“In the case of a megapixel camera, that computational problem requires a matrix of a million times a million elements,” Robinson said. “It’s an incredibly big matrix. But because we break it down through this pattern of rows and columns, our matrix is just 1 million elements.”

That cuts the data for each snapshot from six terabytes to a more practical 21 megabytes, which translates to short processing times. From early versions of FlatCam that required an hour or more to process an image, FlatScope captures 30 frames of 3-D data per second.

Veeraraghavan said the burgeoning internet of things may provide many applications for flat cameras and microscopes. That in turn would drive down costs. “One of the big advantages of this technology compared with traditional cameras is that because we don’t need lenses, we don’t need postfabrication assembly,” he said. “We can imagine this rolling off a fabrication line.”

But their primary targets are medical uses, from implantable scopes for the clinic to palm-sized microscopes for the battlefield. “To be able to carry a microscope in your pocket is a neat technology,” Veeraraghavan said.

The researchers noted that while their current work is focused on fluorescent applications, FlatScope could also be used for bright-field, dark-field and reflected-light microscopy. They suggested an array of FlatScopes on a flexible background could be used to match the contours of a target.

Rice graduate students Jesse Adams and Vivek Boominathan are lead authors of the paper. Co-authors are graduate students Daniel Vercosa and Fan Ye. Baraniuk is the Victor E. Cameron Professor of Electrical and Computer Engineering. Robinson is an assistant professor, and Veeraraghavan is an associate professor of electrical and computer engineering.

The National Science Foundation and the Defense Advanced Research Projects Agency funded the research.

Tags | Research



Social Posts

profile_image

Houston Methodist

@MethodistHosp

@hawkeyejp27 We appreciate the RT ^SF

7 hours ago
profile_image

Houston Methodist

@MethodistHosp

@TimAllenMDJD We appreciate the RT ^SF

7 hours ago
profile_image

Houston Methodist

@MethodistHosp

@onco_cardiology Thanks for sharing ^SF

7 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

Women need #cancer screening exams starting at age 21. What to know: https://t.co/bRQ1nsFCyM #endcancer https://t.co/g019IWFKeo

10 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Acting secretary visits Texas facilities looking for best practices that could be implemented nationwide https://t.co/0G07eEchwf via #VAntagePoint

11 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Today’s #VeteranOfTheDay is Army Veteran Joseph Stephen Acsai. https://t.co/JoNIds6nqW…ph-stephen-acsai/

11 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Bowling alley is hidden gem of Brockton VA campus https://t.co/J5DBcAYw65 via @enterprisenews

12 hours ago
profile_image

BCMHouston

@bcmhouston

Huntington's and other neurological diseases multitude of molecular changes have helped scientists create a new approach to find what is driving these diseases. https://t.co/lUptEn0mYt

13 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

Our expert Dr. Christopher Logothetis shares what makes our Prostate #CancerMoonshot unique: https://t.co/5gpw04T1Gm #CancerMoonshot #endcancer https://t.co/frhL4VfmO9

14 hours ago
profile_image

Rice University

@RiceUniversity

First-gen students learn how to build rockets, connect with peers and fulfill college dreams at #RiceUniversity's Young Owls Leadership Camp. https://t.co/otf6W9r32K https://t.co/OQst25jY3E

15 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

30,000: # of outside pathology reports we review annually 25%: percentage of pathology findings that change from the initial diagnosis See how our pathologists changes lives: https://t.co/F5HBkCgjJi #endcancer

15 hours ago
profile_image

BCMHouston

@bcmhouston

Looking to reduce the risk of heart disease? You might want to think about taking a trip down the aisle. https://t.co/AddjPUl5WX

17 hours ago
profile_image

Memorial Hermann

@memorialhermann

After a two-story fall outside her home, Meena suffered a spinal cord injury that left her paralyzed from the pelvis down. But she took this life challenge as an opportunity to rewrite her story. Watch how she is living a new normal: https://t.co/twBxH9uykC. https://t.co/w0wxYkYzQE

19 hours ago
profile_image

BCMHouston

@bcmhouston

.@BCM_SportsMed Dr. Mark Adickes talks about life after NFL with @CarliLloyd and how that experience shapes how he treats his patients. https://t.co/AiYGAdNlnN

19 hours ago
profile_image

Rice University

@RiceUniversity

RT @RiceUNews: Today #SaudiArabia puts an end to its ban on women driving, opening the way for millions of new drivers to navigate a countr…

20 hours ago