Innovation

Tiny Valves for Tiny Bodies

PolyVascular aims to manufacture valves for children who need heart valve replacement


By Christine Hall | February 7, 2018

Congenital heart disease, the most common birth defect, can affect the heart’s walls, valves and arteries.

The biggest problems associated with treating congenital heart disease are the limited availability and poor durability of replacement heart valves, said Henri Justino, M.D., director of the Charles E. Mullins Cardiac Catheterization Laboratories at Texas Children’s Hospital.

Very few options exist for young children with congenital heart disease, he said. Currently, doctors replace valves using homograft valves from human baby cadavers.

“This means another baby has to die and donate their valve,” said Justino, an associate director of pediatric cardiology at Baylor College of Medicine. “There are not a lot of babies who die and donate their tissue.”

And that baby would have had to die without a major disease, infection or trauma.

This reality prompted Justino and two other researchers to start developing synthetic valves that could fit tiny hearts of varying sizes. Justino teamed up with Daniel Harrington, Ph.D., assistant professor at The University of Texas Health Science Center at Houston, and Kwon Soo Chun, Ph.D., a pediatric cardiology instructor at Baylor, to form a company called PolyVascular. They recently participated in the TMC Innovation Institute’s TMCx medical device accelerator.

The medical device startup creates valves that can be scaled to a range of diameters. Valves for newborns and young children need to be as tiny as 8, 10 or 11 millimeters.

“There are basically no manufactured valves of that size,” Justino said.

The current procedure to replace heart valves with other human valves is similar to an organ transplant in that the patient’s immune system must accept the new tissue.

However, the replacement valves could weaken over time, creating the need for another open-heart surgery.

“Now you are exposed to yet another human valve,” Justino said. “A person could end up being so sensitized to tissue that if they needed to have an organ transplant, they may not be eligible.”

The standard way to build replacement valves involves hand-sewing human or animal tissue around a frame. These are mostly crafted for adult heart valves, so surgeons with tiny patients often end up retrofitting the valves to fit individual bodies.

PolyVascular’s idea is to change the manufacturing paradigm to make valves in small sizes, without human or animal tissue.

“We can bring an entirely new way of manufacturing that doesn’t involve hand-sewing of biologic tissue on a frame,” Justino said.

In addition, PolyVascular valves would be implanted through a minimally-invasive procedure using a catheter, which means the open-heart surgery now required to replace valves would not be necessary.

Road to commercialization

Chester Koh, M.D., has known Justino for close to four years and is familiar with the work he is doing at PolyVascular.

“His company has had a long pathway and a great story about perseverance, and about filling a niche need in the market,” said Koh, a pediatric urologist at Texas Children’s Hospital and associate professor of urology, pediatrics and OB/GYN at Baylor College of Medicine. “I give him a lot of credit for balancing his priority of taking care of patients while also being a physician scientist who brings innovative things from the lab to the bedside.”

The hurdles for pediatric device development are high: Not only is the pediatric field 10 years behind the adult market, but children and parents appear to be less willing to participate in clinical trials, said Koh, who directs the pediatric robotic surgery program at Texas Children’s and Baylor and co-directs a pediatric medical device consortium in Southern California and Houston that is supported by the U.S. Food & Drug Administration (FDA).

Often there is an unmet need in the pediatric world for pint-sized devices, but investors don’t see enough financial potential for them, so many never come to market. But Koh and Justino are trying to change that.

“We need to think creatively to change the financial process with regard to the development of pediatric devices,” Justino said. “If we do our job right, and we can get the investment in a good valve and treat it from the  get-go, the return to society and child could be enormous.”

Justino and his team have reached some milestones along the way to commercialization, including meeting with medical device manufacturers who are eager to work with PolyVascular.

In addition, the team has successfully performed pre-clinical trials of their valve in sheep. In testing, they were able to get their valve to work for 200 million cycles to meet clinical standards.

“That translates to five years of durability in the body at a regular heart rate,” Harrington said.

Next, PolyVascular is going for FDA clearance in order to market their product as a Class III medical device, meaning the device would be implanted in the human body.

Reaching this milestone will take millions of dollars in funding. Justino believes they will need $5 to $7 million to get them through the manufacturer’s contract, to perform additional animal studies and then be ready for human clinical trials. It could be two or three years until the device is ready for human trials, and then longer before it would be ready for widespread use.

“We see it getting closer now,” Justino said. “Approval for general use could be in five, six or seven years, but we will get it into patients who need it as part of the clinical trial.”




Social Posts

profile_image

MD Anderson Cancer Center

@MDAndersonNews

RT @KirstiClifford: Rounding with @ppisters and @CarolPorterDNP was extra special today as we recognized our amazing staff @MDAndersonNews…

18 mins ago
profile_image

BCMHouston

@bcmhouston

RT @BCMSpaceHealth: Attention all researchers & scientists. Join Stephen Mayo and TRISH research #spacehealth.Information can be found he…

25 mins ago
profile_image

UTHealth

@UTHealth

RT @UTPhysicians: Dr. Stuart Harlin will be a guest on KPRC TV Channel 2’s Houston Life. At 1:30 today, he will be discussing varicose and…

26 mins ago
profile_image

Harris Health System

@harrishealth

Reduce your risk of cancer - RE: @WHO https://t.co/DGDoZCOXj5

30 mins ago
profile_image

UTMB Health

@utmbhealth

RT @ppisters: I enjoyed my visit yesterday with @utmbhealth president Dr. David Callender and his team. Great tour and time spent learning…

34 mins ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

Eye cancer survivor Tina Ladowski: "Suddenly, there was hope where none had been before." https://t.co/3cEQhyBpit #Rarecancer @MDAProtons #endcancer https://t.co/7tfmqvlqsB

46 mins ago
profile_image

Veterans Affairs

@DeptVetAffairs

Colorado’s new Rocky Mountain Regional VA Medical Center is open for business https://t.co/btQdn6UuSi via #VAntagePoint

51 mins ago
profile_image

University of Houston

@UHouston

Two University of Houston students and a faculty member, striving to set examples for future generations of women. #GoCoogs! https://t.co/xZWa98q6aW

52 mins ago
profile_image

University of Houston

@UHouston

RT @uhparking: Did you know? Our team has been working hard to get parking permits ready and sent out, so be sure to keep an eye out for yo…

54 mins ago
profile_image

Rice University

@RiceUniversity

RT @RiceUNews: #Houston and #HarrisCounty's serious flooding problems can be solved if funding is available and both the public and local o…

1 hour ago
profile_image

Rice University

@RiceUniversity

Rice’s Disability Support Services has changed its name to the Rice Disability Resource Center to reflect its expanded scope of services offered: https://t.co/63eC9pJn8d https://t.co/UVQXuqI5Qx

1 hour ago
profile_image

BCMHouston

@bcmhouston

Learn how Graduate School of Biomedical Sciences student Jamie Reyes decided to get into research after his grandfather's death. https://t.co/qtE4duuobR #students

2 hours ago
profile_image

BCMHouston

@bcmhouston

Family members and guests joined first-year medical students at Baylor College of Medicine's Family Day on Aug. 11, 2018. The event included campus tours and faculty presentations. View more photos on our Facebook page. https://t.co/PZD1zqjBXL https://t.co/97fj6gZkI2

2 hours ago
profile_image

UTMB Health

@utmbhealth

RT @utmbnews: See the @noticiashouston segment with our own Dr. Cortiella speaking about bioengineering lungs: Investigadores de Texas adel…

2 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Tom, a @USArmy Veteran, reconnected with some of his battle buddies years after their service. He finds relief in the camaraderie of being around Veterans who experienced challenges like his own. Hear his story: https://t.co/JERUKq7VeA https://t.co/AW42GALdGO

2 hours ago