Innovation

UTMB develops promising anti-obesity drug that shrinks fat without suppressing appetite


Scale-Help
By Donna Ramierz | January 04, 2018

Given the ever-increasing obesity epidemic, researchers from The University of Texas Medical Branch at Galveston have discovered a promising developing drug that has been shown to selectively shrink excess fat by increasing fat cell metabolism. The drug significantly reduces body weight and blood cholesterol levels without lowering food intake in obese mice, according to a recent study published in Biochemical Pharmacology.

Obesity is a major public health problem around that world that is a leading cause of healthcare costs and compromised quality of life. In the U.S., 40 percent of adults are obese and 30 percent are overweight, battling serious obesity-related chronic diseases. The estimated cost of obesity in the U.S. is about $150 billion each year.

“As fat cells grow larger, they begin to overexpress a protein that acts as a metabolic brake that slows down fat cell metabolism, making it harder for these cells to burn accumulating fat,” said senior author Stanley Watowich, UTMB associate professor in the department of biochemistry and molecular biology. “In addition, as the fat tissue expands, they secrete greater amounts of hormones and pro-inflammatory signals that are responsible for several chronic diseases, including type 2 diabetes and cardiovascular disease.”

The researchers discovered a molecule that blocks this metabolic brake from operating in obese white fat cells. By blocking this metabolic brake, they were able to increase the metabolism within white fat cells.

In the study, mice were fed a high-fat diet until they became obese and then received either the drug or a placebo. Following 10 days of drug treatment, researchers found that the obese mice receiving the actual drug lost more than seven percent of their total body weight and their white fat tissue mass and cell size decreased by 30 percent compared with the placebo group. In addition, blood cholesterol in drug-treated mice were lowered to normal levels, similar to those of non-obese mice.

On the contrary, placebo-treated mice continued to accumulate white fat and gain weight throughout the study. Interestingly, mice in both the drug-treated and placebo groups consumed the same amount of food during the course of the study period, showing that the fat loss was not due to appetite suppression.

“Blocking the action of the fat cell brake provides an innovative ‘fat’-specific mechanism to increase cell metabolism and reduce the size of white fat deposits, thereby treating a root cause of obesity and related metabolic diseases,” said senior author Harshini Neelakantan, a UTMB research scientist in the department of biochemistry and molecular biology. “These initial results are encouraging and support further development of this technology as a new and more effective approach to combating metabolic diseases.”

Other study authors include UTMB’s Virginia Vance, Michael Wetzel, Celeste Finnerty and Jonathan Hommel as well as Hua-Yu Leo Wang and Stanton McHardy from the University of Texas at San Antonio.

Tags | Innovation



Social Posts

profile_image

Houston Methodist

@MethodistHosp

4.26, noon-3 p.m.: @MethodistHosp San Jacinto Hospital Hiring Event for experienced RNs. Learn more: https://t.co/4v7r2jpdTP https://t.co/pVFG8AmsG4

7 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

RT @CancerFrontline: An @MDAndersonNews team developed a personalized vaccine that exposes evasive colorectal cancer to an immune attack ht…

8 hours ago
profile_image

Houston Methodist

houstonmethodist

Discover world-class career opportunities for experienced RNs at the Houston Methodist San Jacinto Hospital hiring event on 4.26 from noon-3 p.m. Bring several copies of your resume & park free in the visitor parking lot. Learn more: http://pxlme.me/1JA7A6zf

9 hours ago
profile_image

University of Houston

@UHouston

RT @UHCougarMGolf: .@UHouston alum & @CBSSports broadcasting great Jim Nantz reacts to being named 2018 Ambassador of Golf CONGRATS, Jim,…

9 hours ago
profile_image

BCMHouston

@bcmhouston

Sneezing, headaches and a stuffy nose always means you have allergies right? Wrong! https://t.co/wf8ti3TKVw

10 hours ago
profile_image

Baylor College of Medicine

BaylorCollegeOfMedicine

Congratulations to Dr. Yingbin Fu on earning the Helen Juanita Reed Award for Macular Degeneration from the BrightFocus Foundation.

10 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

New Mexico Veterans set sights on Golden Age Games competition - Volunteers needed for 32nd annual event in Albuquerque https://t.co/gS2J3VC4HZ via @Sports4Vets on #VAntagePoint

10 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Telehealth education is on the move in Colorado https://t.co/KgB6D7Xt37 via @KREX5_Fox4

11 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

It's a new day at your Manchester VA https://t.co/lDrYdgumuw via @seacoastonline

12 hours ago
profile_image

Rice University

RiceUniversity

How can you make the last day of class even better? Bring some cute animals to campus! 🐰

12 hours ago
profile_image

UTHealth

@UTHealth

Did you know #stroke is the fifth leading cause of death and leading cause of disability in the U.S.? Come to our Stomp Out Stroke Festival from 9 a.m.-3:30 p.m. on Sat., April 28 @DiscoveryGreen to find out how to decrease your stroke risk. Register at https://t.co/PBNoFVY455. https://t.co/sYm9Ny734p

12 hours ago
profile_image

UTHealth

@UTHealth

RT @UTHealthSPA: FYI >>> NIH Funding Opportunities and Notices for April 20, 2018 https://t.co/VXvK9WVKy4 #grant #grants #research

12 hours ago
profile_image

UTHealth

@UTHealth

RT @uthpsychiatry: The UTHealth Center of Excellence on Mood Disorders is conducting a new clinical research study for adults with schizoph…

12 hours ago
profile_image

U.S. Department of Veterans Affairs

VeteransAffairs

Today’s #VeteranOfTheDay is Navy Veteran Tammie Jo Shults. Tammie Jo served for 10 years as a pilot and earned the rank of lieutenant commander. Tammie Jo grew up on a New Mexico ranch near Holloman Air Force Base where she developed her interest in flying. She attended MidAmerica Nazarene University, graduating in 1983. A year after taking the Navy aviation exam, Tammie Jo found a recruiter who processed her application. She attended officer candidate school in Pensacola, Florida, and was assigned to a training squadron at Naval Air Station Chase Field in Beeville, Texas. Tammie Jo was an instructor pilot, teaching students how to fly the Navy T-2 trainer. She later flew the A-7 Corsair in Lemoore, California. Tammie Jo was among the first female fighter pilots for the Navy and was the first woman to fly an F/A-18 Hornet. In 1993, after 10 years of service, she left the Navy. Earlier this week, Tammie Jo completed the successful emergency landing of Southwest flight 1380 at the Philadelphia International Airport. The Boeing 737-700 lost an engine, causing shrapnel to strike a window. With 148 people on board, one woman died and seven were injured. Thank you for your service, Tammie Jo.

12 hours ago
profile_image

TAMU Health Sciences

@TAMHSC

We are proud to "Teal Out" in support of #StepInStandUp! Even one such incident is too many. https://t.co/NQdJ5UyHkA

12 hours ago