Research

Nanotubes go with the flow to penetrate brain tissue

Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation


1218_NANOWIRE-3-WEB
By Mike Williams | December 18, 2017

Rice University researchers have invented a device that uses fast-moving fluids to insert flexible, conductive carbon nanotube fibers into the brain, where they can help record the actions of neurons.

The Rice team’s microfluidics-based technique promises to improve therapies that rely on electrodes to sense neuronal signals and trigger actions in patients with epilepsy and other conditions.

Eventually, the researchers said, nanotube-based electrodes could help scientists discover the mechanisms behind cognitive processes and create direct interfaces to the brain that will allow patients to see, to hear or to control artificial limbs.

The device uses the force applied by fast-moving fluids that gently advance insulated flexible fibers into brain tissue without buckling. This delivery method could replace hard shuttles or stiff, biodegradable sheaths used now to deliver wires into the brain. Both can damage sensitive tissue along the way.

The technology is the subject of a paper in the American Chemical Society journal Nano Letters.

Lab and in vivo experiments showed how the microfluidic devices force a viscous fluid to flow around a thin fiber electrode. The fast-moving fluid slowly pulls the fiber forward through a small aperture that leads to the tissue. Once it crosses into the tissue, tests showed the wire, though highly flexible, stays straight.

“The electrode is like a cooked noodle that you’re trying to put into a bowl of Jell-O,” said Rice engineer Jacob Robinson, one of three project leaders. “By itself, it doesn’t work. But if you put that noodle under running water, the water pulls the noodle straight.”

The wire moves slowly relative to the speed of the fluid. “The important thing is we’re not pushing on the end of the wire or at an individual location,” said co-author Caleb Kemere, a Rice electrical and computer engineer who specializes in neuroscience. “We’re pulling along the whole cross-section of the electrode and the force is completely distributed.”

“It’s easier to pull things that are flexible than it is to push them,” Robinson said.

“That’s why trains are pulled, not pushed,” said chemist Matteo Pasquali, a co-author. “That’s why you want to put the cart behind the horse.”

The fiber moves through an aperture about three times its size but still small enough to let very little of the fluid through. Robinson said none of the fluid follows the wire into brain tissue (or, in experiments, the agarose gel that served as a brain stand-in).

There’s a small gap between the device and the tissue, Robinson said. The small length of fiber in the gap stays on course like a whisker that remains stiff before it grows into a strand of hair. “We use this very short, unsupported length to allow us to penetrate into the brain and use the fluid flow on the back end to keep the electrode stiff as we move it down into the tissue,” he said.

“Once the wire is in the tissue, it’s in an elastic matrix, supported all around by the gel material,” said Pasquali, a carbon nanotube fiber pioneer whose lab made a custom fiber for the project. “It’s supported laterally, so the wire can’t easily buckle.”
Carbon nanotube fibers conduct electrons in every direction, but to communicate with neurons, they can be conductive at the tip only, Kemere said. “We take insulation for granted. But coating a nanotube thread with something that will maintain its integrity and block ions from coming in along the side is nontrivial,” he said.

Sushma Sri Pamulapati, a graduate student in Pasquali’s lab, developed a method to coat a carbon nanotube fiber and still keep it between 15 to 30 microns wide, well below the width of a human hair. “Once we knew the size of the fiber, we fabricated the device to match it,” Robinson said. “It turned out we could make the exit channel two or three times the diameter of the electrode without having a lot of fluid come through.”

The researchers said their technology may eventually be scaled to deliver into the brain at once multiple microelectrodes that are closely packed; this would make it safer and easier to embed implants. “Because we’re creating less damage during the implantation process, we might be able to put more electrodes into a particular region than with other approaches,” Robinson said.

Flavia Vitale, a Rice alumna and now a research instructor at the University of Pennsylvania, and Daniel Vercosa, a Rice graduate student, are lead authors of the paper. Co-authors are postdoctoral fellow Alexander Rodriguez, graduate students Eric Lewis, Stephen Yan and Krishna Badhiwala and alumnus Mohammed Adnan of Rice; postdoctoral researcher Frederik Seibt and Michael Beierlein, an associate professor of neurobiology and anatomy at McGovern Medical School at the University of Texas Health Science Center at Houston; and Gianni Royer-Carfagni, a professor of structural mechanics at the University of Parma, Italy.

Robinson and Kemere are assistant professors of electrical and computer engineering and adjunct assistant professors at Baylor College of Medicine. Pasquali is a professor of chemical and biomolecular engineering, of materials science and nanoengineering and of chemistry and chair of Rice’s Department of Chemistry.

Supporting the research are the Defense Advanced Research Projects Agency, the Welch Foundation, the National Science Foundation, the Air Force Office of Scientific Research, the American Heart Association, the National Institutes of Health, the Citizens United for Research in Epilepsy Taking Flight Award and the Dan L. Duncan Family Foundation.

Tags | Research



Social Posts

profile_image

Houston Methodist

@MethodistHosp

4.26, noon-3 p.m.: @MethodistHosp San Jacinto Hospital Hiring Event for experienced RNs. Learn more: https://t.co/4v7r2jpdTP https://t.co/pVFG8AmsG4

7 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

RT @CancerFrontline: An @MDAndersonNews team developed a personalized vaccine that exposes evasive colorectal cancer to an immune attack ht…

8 hours ago
profile_image

Houston Methodist

houstonmethodist

Discover world-class career opportunities for experienced RNs at the Houston Methodist San Jacinto Hospital hiring event on 4.26 from noon-3 p.m. Bring several copies of your resume & park free in the visitor parking lot. Learn more: http://pxlme.me/1JA7A6zf

9 hours ago
profile_image

University of Houston

@UHouston

RT @UHCougarMGolf: .@UHouston alum & @CBSSports broadcasting great Jim Nantz reacts to being named 2018 Ambassador of Golf CONGRATS, Jim,…

9 hours ago
profile_image

BCMHouston

@bcmhouston

Sneezing, headaches and a stuffy nose always means you have allergies right? Wrong! https://t.co/wf8ti3TKVw

10 hours ago
profile_image

Baylor College of Medicine

BaylorCollegeOfMedicine

Congratulations to Dr. Yingbin Fu on earning the Helen Juanita Reed Award for Macular Degeneration from the BrightFocus Foundation.

10 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

New Mexico Veterans set sights on Golden Age Games competition - Volunteers needed for 32nd annual event in Albuquerque https://t.co/gS2J3VC4HZ via @Sports4Vets on #VAntagePoint

10 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Telehealth education is on the move in Colorado https://t.co/KgB6D7Xt37 via @KREX5_Fox4

11 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

It's a new day at your Manchester VA https://t.co/lDrYdgumuw via @seacoastonline

12 hours ago
profile_image

Rice University

RiceUniversity

How can you make the last day of class even better? Bring some cute animals to campus! 🐰

12 hours ago
profile_image

UTHealth

@UTHealth

Did you know #stroke is the fifth leading cause of death and leading cause of disability in the U.S.? Come to our Stomp Out Stroke Festival from 9 a.m.-3:30 p.m. on Sat., April 28 @DiscoveryGreen to find out how to decrease your stroke risk. Register at https://t.co/PBNoFVY455. https://t.co/sYm9Ny734p

12 hours ago
profile_image

UTHealth

@UTHealth

RT @UTHealthSPA: FYI >>> NIH Funding Opportunities and Notices for April 20, 2018 https://t.co/VXvK9WVKy4 #grant #grants #research

12 hours ago
profile_image

UTHealth

@UTHealth

RT @uthpsychiatry: The UTHealth Center of Excellence on Mood Disorders is conducting a new clinical research study for adults with schizoph…

12 hours ago
profile_image

U.S. Department of Veterans Affairs

VeteransAffairs

Today’s #VeteranOfTheDay is Navy Veteran Tammie Jo Shults. Tammie Jo served for 10 years as a pilot and earned the rank of lieutenant commander. Tammie Jo grew up on a New Mexico ranch near Holloman Air Force Base where she developed her interest in flying. She attended MidAmerica Nazarene University, graduating in 1983. A year after taking the Navy aviation exam, Tammie Jo found a recruiter who processed her application. She attended officer candidate school in Pensacola, Florida, and was assigned to a training squadron at Naval Air Station Chase Field in Beeville, Texas. Tammie Jo was an instructor pilot, teaching students how to fly the Navy T-2 trainer. She later flew the A-7 Corsair in Lemoore, California. Tammie Jo was among the first female fighter pilots for the Navy and was the first woman to fly an F/A-18 Hornet. In 1993, after 10 years of service, she left the Navy. Earlier this week, Tammie Jo completed the successful emergency landing of Southwest flight 1380 at the Philadelphia International Airport. The Boeing 737-700 lost an engine, causing shrapnel to strike a window. With 148 people on board, one woman died and seven were injured. Thank you for your service, Tammie Jo.

12 hours ago
profile_image

TAMU Health Sciences

@TAMHSC

We are proud to "Teal Out" in support of #StepInStandUp! Even one such incident is too many. https://t.co/NQdJ5UyHkA

12 hours ago