Innovation

Making Heart Transplants Obsolete with Small Removable Pump

UH Engineer Pioneers Next-Generation Heart Pump with Help of 3-D Printer


By Laurie Fickman | December 18, 2017

On this 50th anniversary of the first heart transplant, which occurred in December 1967, a University of Houston biomedical engineer is creating a next-generation heart pump for patients suffering with heart failure. Results are so promising that Ralph Metcalfe, professor of mechanical and biomedical engineering, who oversees the research project with William Cohn, director of the Center for Device Innovation at the Texas Medical Center, predicts radical improvement in treatment of failing hearts will happen within a decade.

What sets it apart from other devices is its ability to assist, perhaps temporarily with the potential to remove it, allowing some patients to avoid both heart transplants and life-long use of an LVAD (left ventricular-assist devices) heart pump. “This device, once perfected, can have as much impact on society as the polio vaccine had in the 1950s,” said Metcalfe. “Breakthroughs are coming very fast.”

These new devices in some cases – perhaps most – will be lifelong helpers for the heart. But for some, the device is expected to give the heart enough of a rest that the heart can actually heal, something infrequently heard of in today’s state-of-the-art practices. This will not be like the larger and more cumbersome pumps of past decades, but a small device that can be implanted without major surgery. The goal is to develop better, less invasive treatments that can be used early in the course of cardiovascular problems, long before critical stages of heart failure manifest. Potential benefits are enormous.

“If you look at the causes of death in 2015, the most recently reported year, about 23 percent were related to heart disease. Heart failure is a major part of that,” Metcalfe said. In the United States, more than 6.5 million people live with varying stages of heart failure.

In Texas Heart Institute laboratories, performance of LVADs depends in great measure on the small impellers mechanical engineering Ph.D. candidate Alex Smith is working to perfect. To maintain ideal speed and pressure, the impellers must maintain a flow that is neither so mild the pump is inefficient nor so forceful that cells become misshapen or otherwise damaged by shear in the blood flow.

3-D printers replicate Smith’s designs in about eight hours, a process that used to take a machinist months to craft by hand. “This is a huge advance, hard to overemphasize,” said Metcalfe.

A happy anniversary

Those early artificial hearts, medical breakthroughs in the 1960’s, were huge and heavy, with only a small part of the mechanism implanted into a patient’s chest. The rest of the (often noisy) equipment was left outside of the body, either bedside or on a cart that trailed the patient. Survival was measured in weeks at first, then in months. Today, patients can live up to a decade with their circulatory system at least partially dependent on an implanted mechanical pump with a wearable external battery.

Current artificial heart pumps are not replacements for a biologic heart. Instead, they are assistants that function alongside a weakened heart, helping do the job of pumping blood. These left ventricular-assist devices are implanted close to the patient’s own heart. They most often are considered a “bridge-to-transplant” treatment, a way to carry a very sick patient until a suitable donor heart is found.

The heavy, bulky equipment that functioned outside a patient’s body may be long gone, but the heart pumps now being implanted are still ungainly enough to cause discomfort.

Small miracles

The small device the team is developing fits easily in the palm of a hand. It will be implanted percutaneously, meaning it will be passed through an incision in the skin, most likely into the subclavian vein just beneath the collar bone, then carried to the heart’s atrial septum (the wall separating the left and right atria). In contrast, implanting a current heart pump requires a surgeon to make a large incision and open the patient’s chest.

Intervening early in the disease process, before the heart is too seriously damaged, allows the best chance for such healing to happen.

“It’s like an athlete whose injury is immediately immobilized on the playing field,” Metcalfe explains. “By being immobilized, the injured area heals quicker. We haven’t been able to immobilize a living heart, of course. But with this device, many unhealthy hearts may get the rest they need to recover.”

If complete healing is accomplished, the LVAD will be removed and the heart left to function on its own, healthy and strong. Those patients could expect full lifespans and enjoy normal lifestyles.

About the University of Houston
The University of Houston is a Carnegie-designated Tier One public research university recognized by The Princeton Review as one of the nation’s best colleges for undergraduate education. UH serves the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. Located in the nation’s fourth-largest city, UH serves more than 45,000 students in the most ethnically and culturally diverse region in the country.

Tags | Innovation



Social Posts

profile_image

Veterans Affairs

@DeptVetAffairs

VA is committed to providing premiere, consistent care and service to Veterans and their families at all times. Re… https://t.co/E1OWQ7ezV7

37 mins ago
profile_image

Rice University

@RiceUniversity

https://t.co/lL8QZISxw3

38 mins ago
profile_image

Memorial Hermann

MemorialHermann

It’s easy and fashionable. But is juicing really healthy? Here’s the truth about the diet du jour: spr.ly/6188DMzKI.

45 mins ago
profile_image

Harris Health System

HarrisHealthSystem

When Marlen Mendoza Rivas was diagnosed with cancer she didn't know how to explain it to her children. She and her family found support and reassurance from her...

48 mins ago
profile_image

Texas Children's

@TexasChildrens

"As parents, we are given a rare opportunity – the chance to protect our children from a life impacted by all HPV-r… https://t.co/VXvjI3r0Rk

1 hour ago
profile_image

Texas A&M University Health Science Center

TAMUhealthsciences

Sitting in a wet bathing suit can be potentially harmful—as it provides a perfect climate for fungus.

1 hour ago
profile_image

BCMHouston

@bcmhouston

Congratulations to Dr. Thomas Giordano on being appointed chief of the infectious disease section in the Department… https://t.co/XP4X0BagFx

1 hour ago
profile_image

Baylor College of Medicine

BaylorCollegeOfMedicine

There’s still time to join us this weekend for the #HouRace4TheCure! Register for our team and join team captain, two-time Olympic gold medalist, Carli Lloyd! h...

1 hour ago
profile_image

BCMHouston

@bcmhouston

RT @BCMSpaceHealth: The power of TRISH lies with @DoritD and @VEWotring! Listen to them talk in the next few minutes about the future of sp…

1 hour ago
profile_image

Texas Children's Hospital

TexasChildrensHospital

"As parents, we are given a rare opportunity – the chance to protect our children from a life impacted by all HPV-related disease and cancer." Read more:

1 hour ago
profile_image

Houston Methodist

@MethodistHosp

@DockLineMagInc Thanks for the RTs ^SF

2 hours ago
profile_image

TexasHeartInstitute

@Texas_Heart

RT @KeriKimler: Houston's not eating that well. Can a new mobile grocery help? @HoustonChron https://t.co/eLo4Vd5u2y

2 hours ago
profile_image

TexasHeartInstitute

@Texas_Heart

We are super proud of both runners and their families! https://t.co/E5MIKoUPTl

2 hours ago
profile_image

TexasHeartInstitute

@Texas_Heart

RT @bcostelloMD: Next: Electrophysiologist Dr. Mehdi Razavi taking on the monstrous #Afib Compared to men, women with afib have: 1. ⬆️MOR…

2 hours ago
profile_image

Rice University

@RiceUniversity

Power Moves: #Houston’s transportation history is topic of new book by @RiceKinderInst fellow.… https://t.co/HWjpbRKzze

2 hours ago