Research

Biology’s Need For Speed Tolerates a Few Mistakes

Rice University scientists find DNA, protein production optimizes for speed over accuracy


0501_PROOFREAD-1-WEB
By Mike Williams | May 03, 2017

Biology must be in a hurry. In balancing speed and accuracy to duplicate DNA, produce proteins and carry out other processes, evolution has apparently determined that speed is of higher priority, according to Rice University researchers.

Rice scientists are challenging assumptions that perfectly accurate transcription and translation are critical to the success of biological systems. It turns out a few mistakes here and there aren’t critical as long as the great majority of the biopolymers produced are correct.

A new paper shows how nature has optimized two processes, DNA replication and protein translation, that are fundamental to life. By simultaneously analyzing the balance between speed and accuracy, the Rice team determined that naturally selected reaction rates optimize for speed “as long as the error level is tolerable.”

The paper in the Proceedings of the National Academy of Sciences is by Rice postdoctoral fellow Kinshuk Banerjee and his advisers, Oleg Igoshin, an associate professor of bioengineering and biosciences, and Anatoly Kolomeisky, a professor of chemistry and chemical and biomolecular engineering.

Their technique allowed them to see that while error correction through kinetic proofreading leans toward speed, the cost of going as fast as possible could sometimes be too big.

Kinetic proofreading is the biochemical process that allows enzymes, such as those responsible for protein and DNA production, to achieve better accuracy between chemically similar substrates. Sequences are compared to templates at multiple steps and are either approved or discarded, but each step requires time and energy resources and as a result various tradeoffs occur.

“Additional checking processes slow down the system and consume extra energy,” Banerjee said. “Think of an airport security system that checks passengers. Higher security (accuracy) means a need for more personnel (energy), with longer waiting times for passengers (less speed).”

The researchers found the prevalent theories unsatisfying when they became interested in learning how nature corrects its errors.

“I’ve never been happy with the way people look at biological error correction mechanisms because their approaches were oversimplified,” said Kolomeisky, who studies the mechanisms of biological systems. “I wanted a more comprehensive framework, so we could look at both the right and wrong pathways for replication and translation, as well as for other processes.

“We developed a powerful quantitative method with which we can simultaneously calculate error, speed and energy costs, where previous methods only focused on errors,” he said.

“We saw what was missing,” added Igoshin, whose lab at Rice’s BioScience Research Collaborative studies computational systems biology. “By simultaneously analyzing several parameters, we can see the interplay between energy, error and speed and determine where optimization occurs.”

While speed is still a priority, biological systems sacrifice a bit by fine-tuning error correction. Graphs produced by the Rice calculations show that when protein replication is limited by just a percentage point or two below maximum speed, the accuracy remains high and energy savings are significant.

“It is perhaps not that surprising that accuracy is not the only concern for the system,” Banerjee said. “What is fascinating is how the systems optimize their performance by fine-tuning these apparently opposite objectives while taking care of the energetic cost.”

The concept of speed versus accuracy has already been explored in a very different system at Rice through work by computer scientist Krishna Palem, who created microprocessors that increase their efficiency by allowing slight imperfections in their calculations.

“That makes just as much sense for biology as it does for engineering,” Igoshin said. “Once you’re accurate enough, you stop optimizing.”

The new paper is the second of two in quick succession by the trio to address accuracy in cellular processes. In March, they reported in the American Chemical Society’s Journal of Physical Chemistry Letters that error correction in the production of enzymes, the biological catalysts essential to all life, is always determined by kinetics rather than thermodynamics. The authors said the research clarified important features of enzymatic selectivity mechanisms in biological systems.

The Center for Theoretical Biological Physics at Rice, the National Science Foundation and the Welch Foundation supported the research.

Tags | Research



Social Posts

profile_image

BCMHouston

@bcmhouston

RT @BCMHouston_News: Congratulations to @bcmhouston's Dr. Meng Wang, a 2018 #HHMIInvestigator! She is making dramatic advances in how we un…

24 mins ago
profile_image

San José Clinic

SanJoseClinic

Thank you to the Houston Hispanic Dental Association for volunteering your time and talents at our latest Saturday Clinic! Your generosity and partnership help us make smiles together.

27 mins ago
profile_image

BCMHouston

@bcmhouston

School of Medicine graduating student Aishwarya Venkataraman shares her unique connection she formed with Baylor College of Medicine at a young age. https://t.co/Sa1C7LNXBg

34 mins ago
profile_image

Rice University

@RiceUniversity

Despite the economic and political stakes, debate on how to value groundwater in Texas has been sparse, according to an expert from the @CES_Baker_Inst. https://t.co/DeMZL5BWQG https://t.co/yLwNZxTWkd

34 mins ago
profile_image

Baylor College of Medicine

BaylorCollegeOfMedicine

Glow from the inside out with these foods for radiant skin.

35 mins ago
profile_image

UTMB Health

@utmbhealth

RT @erikafuchs: Head to the women’s health poster session today at 2 PM in the Levin Hall dining room. @utmbhealth @CIRWH @utmbnews https:/…

37 mins ago
profile_image

Veterans Affairs

@DeptVetAffairs

#VAntagePoint: VA doctor survives stroke with help of VA TeleStroke program he helped put in place https://t.co/ufEqhnYjXl

49 mins ago
profile_image

University of Houston

@UHouston

Live now! https://t.co/hq70sDkWZR

52 mins ago
profile_image

UTMB Health

@utmbhealth

RT @utmbnews: Patient condition updates 5/23/18 9:00 a.m. Adult male remains in CRITICAL condition and adult female remains in GOOD conditi…

1 hour ago
profile_image

Texas Children's

@TexasChildrens

In Legacy Tower shell space was created as a designated area on every floor to store additional beds. https://t.co/KsI2f8lvtO

1 hour ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

MD Anderson president @PPisters on what lies ahead: "We have the opportunity to create a totally different environment for patients, game-changing in the industry." https://t.co/Gd18pzpP68 @HoustonChron #endcancer

1 hour ago
profile_image

University of Houston

@UHouston

RT @American_BSB: Fans - we have live streams going at both fields today. Or you can hop between them at https://t.co/MsmsWQjewg… @GoShock…

1 hour ago
profile_image

University of Houston

@UHouston

RT @UHVetServices: Welcome new CoogVets! 😁🐾🇺🇸 https://t.co/fB7oOjys7k

1 hour ago
profile_image

BCMHouston

@bcmhouston

RT @dana_fdn: Join @NYASciences for the #RossPrize2018 presentation and lecture on June 5th, honoring @bcmhouston @HHMINEWS’s Dr. Huda Y. Z…

1 hour ago
profile_image

Rice University

@RiceUniversity

https://t.co/McLohcR8cS

2 hours ago