Research

Statistics method shows networks differ in epileptic brains

Rice University scientists develop novel method to study brain connections in epilepsy


0306_BRAIN-4-WEB
By Mike Williams | March 08, 2017

A novel statistical approach to analyzing patients with epilepsy has revealed details about their brains’ internal networks. The findings may lead to better understanding and treatment of the disease, according to Rice University researchers.

Rice statistician Marina Vannucci and lead author Sharon Chiang, an M.D./Ph.D. student at Rice and Baylor College of Medicine, and their co-authors detailed their technique to analyze brain activity data from patients with epilepsy and control groups to see how distinct structures in the brain spontaneously interact.

The results showed differences in brain connectivity between the groups. In one instance, they showed structures that plan and then activate movement, which tend to interact in one direction in control subjects, may have abnormal bidirectional interactions in the brains of patients with temporal lobe epilepsy.

The study appears in the journal Human Brain Mapping.

The Rice team approached its analysis of the brain in much the same way a meteorologist uses radar to predict the weather. Rather than winds and water, they look at the shifting circulation of blood in brain images that depict dynamic connections between structures.

“Temporal lobe epilepsy is a form of focal epilepsy with seizures originating from the brain’s temporal lobe. However, a network of regions is affected, which is evident in the research findings,” said co-author John Stern, director of the Epilepsy Clinical Program at the University of California, Los Angeles, and co-director of the UCLA Seizure Disorder Center.

“The idea is that, with better understanding of drivers in these networks, down the line, future treatments may be able to disrupt these networks and prevent epileptic seizures,” Chiang said.

The new approach is based on Bayesian probability, which does not provide definitive answers but “degrees of belief” based on the strength of the evidence.

The researchers used two types of data from patients with temporal lobe epilepsy and healthy control subjects. The first, functional magnetic resonance imaging (fMRI), detailed the brain’s resting-state networks, thought to control higher-order functions including attention, executive control and language. Functional MRI produces maps of the brain based on oxygenated blood flow related to neural activity.

The second, standard MRI, detailed structural connections in the brain believed to be necessary for effective communication. Integrating both types of data allowed for improved inference, Vannucci said.

Extended imaging sessions at UCLA allowed the statisticians to model links between structures in epileptic patients’ brains and to compare them either individually or collectively with each other and with the controls.

The data from scans of multiple patients and control subjects helped piece together insights unavailable from individual techniques like electroencephalography or positron emission tomography (PET) scans.

“The statistical approach has advantages,” said Vannucci, who chairs Rice’s Department of Statistics. “One is that we use data from multiple subjects. Rather than estimating networks from individuals and then averaging them, we estimate networks at the epileptic and control group levels by using all the data at once. Then we can look for differences between the two networks and across time.

“We take into account what we call heterogeneity, accounting for variations between one individual and another,” she said. “It allows us to get better estimations. At the end of the day we have fewer false positives, so the network we are able to construct is more reliable.

“Ultimately, we want to understand what is different about that connectivity and the effect of epilepsy on the connections across the whole brain,” she said.

Vannucci said results using fMRI data corroborated several previously known connections found through electrocorticography. One, for example, was the sequential activation during motor tasks of the premotor cortex, then the primary somatosensory cortex, then the primary motor cortex in healthy brains.

But it also revealed novel connections in patients with temporal lobe epilepsy, including two-way communications between the premotor and primary somatosensory cortex. It showed epileptic brains engage other parts of the brain to handle alertness tasks. Brains of patients with epilepsy may have smaller overall areas and intensity of activation in their alertness networks, which keep brains ready for incoming stimuli. The study found a different spatial pattern for effective connections into and out of the alertness network in patients as compared to controls.
“Currently, surgical resection is the treatment of choice for some patients with medically refractory epilepsy,” Chiang said. “However, if drivers in these networks can be identified and possibly stimulated, rather than completely resected, this may potentially allow a more targeted treatment.”

Co-authors are Michele Guindani, formerly an assistant professor of biostatistics at the University of Texas MD Anderson Cancer Center and now an associate professor of statistics at the University of California, Irvine; Hsiang Yeh, a clinical researcher at UCLA; and Zulfi Haneef, an assistant professor of neurology and neurophysiology at Baylor College of Medicine. Vannucci is the Noah Harding Professor of Statistics at Rice.
The National Library of Medicine Training Fellowship in Biomedical Informatics and the Gulf Coast Consortia for Quantitative Biomedical Sciences supported the research.

Tags | Research



Social Posts

profile_image

MD Anderson Cancer Center

@MDAndersonNews

@bigdock Great news! Sending you our best wishes.

45 mins ago

If you love citrus, you will really love these recipes with options from salad to stir-fry.

1 hour ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

Women with darker skin can get #skincancer, too. Our Dr. Susan Chon shares what you should know: https://t.co/02BBg4YNmw @thirdAGE #endcancer

2 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

Overcoming #cancer shapes 3 MD Anderson employees’ perspectives: https://t.co/cUt1DJj9F1 #endcancer https://t.co/FmZgRjUw0b

2 hours ago
profile_image

University of Houston

@UHouston

Legacy is planting seeds in a garden you never get to see. Tonight we’re celebrating the legacy of @UHValentiSchool. Thank you @seguntheprogram for being MC and @jdbalart for the Impact Award https://t.co/tBmWEylyiU

3 hours ago
profile_image

BCMHouston

@bcmhouston

Entering a new era: learn more about TMC3, the new translational research campus. https://t.co/pCLaez3zts

3 hours ago

Be a part of the nation's largest autism research study. Get in-person help with signing up for SPARK for Autism at the Houston Museum of Natural Science during their sensory friendly event April 28. http://bit.ly/SPARKevents

3 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

An Army Veteran confronts his own trauma with a camera https://t.co/qoMYFKKZjq via @nytimes

3 hours ago
profile_image

UTHealth

@UTHealth

In this interview with @ktrhnews, Dr. James Langabeer of @UTHealth_SBMI and @UTEmergencyMed discusses the decline in prescriptions for addictive painkillers: https://t.co/CMlYcJngA4

4 hours ago
profile_image

UTHealth

@UTHealth

At 10 months old, David was so weak and behind in development that he couldn't even sit up. But now the bubbly 4-year-old is growing fast and swinging baseball bats. Read about his miraculous journey w/@UTPhysicians CARE Clinic. https://t.co/3chQLYaeex #ManyFacesOfUTHealth https://t.co/LZptSVgsDY

4 hours ago
profile_image

UTHealth

@UTHealth

RT @UTCVSurgery: Another great free medical screening service brought to you by @UTPhysicians! Check out Dr Stuart Harlin on this morning’s…

4 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Veterans serving Veterans: Researchers who served. This @usairforce Veteran volunteered as a pararescueman in Vietnam, and then went on to serve others with a career in orthopedic research. https://t.co/2NQHhSTmQx via @VeteransHealth on #VAntagePoint

4 hours ago

At 10 months old, David was so weak and behind in development that he couldn't even sit up. But now the bubbly 4-year-old is growing fast and already swinging baseball bats. Read about his miraculous journey with the UT Physicians CARE Clinic. #ManyFacesOfUTHealth

4 hours ago

Today’s #VeteranOfTheDay is Navy Veteran Willard Knockum Jr. Willard served from 1964 to 1971 during the Vietnam War. Willard joined the Navy in 1964. He was trained in counterinsurgency and survival surveillance reconnaissance and weapons at the Marine Base Camp in Pendleton, California. He became a Boatswain Mate, a role that fulfills a variety of tasks such as lookout duty, training and directing maintenance duties, damage control, operating and maintaining equipment and more. Willard also participated in North Atlantic Treaty Organization and anti-submarine warfare exercises. Willard served on the destroyer USS Fox 779 before he deployed to Vietnam in 1969 during the Vietnam War where he served in Saigon and Dong Tam. He was assigned to Military Assistance Command, a group of assault river boats that patrolled hostile waters around the Army Base at Dong Tam. For his service, Willard was awarded the Vietnam Service Medal and the Republic of Vietnam Campaign Medal. Willard now lives in Folsom, Louisiana as a retired United Postal Service mail handler. Thank you for your service, Willard!

5 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Today’s #VeteranOfTheDay is @USNavy Veteran Willard Knockum, Jr https://t.co/7lDPTdSI86

5 hours ago