Innovation

Battling Infection

Rice University researchers have developed an antibiotic-infused, time-released gel for space holders in facial reconstruction


By Texas Medical Center | February 3, 2016

Within the fast-paced laboratory of Antonios Mikos, Ph.D., Louis Calder Professor of Bioengineering and Chemical and Biomolecular Engineering at Rice University, researchers strive to develop a wealth of materials to repair severe craniofacial injuries—often ones sustained through trauma or pathological defects like tumor removal. Unfortunately, one familiar, pesky interloper has the potential to jeopardize healthy recovery and tissue growth as patients receive temporary implants for facial reconstruction: infection.

“Infection is an important problem that needs to be considered with medical devices, because bacteria can prevent the body from being able to heal,” said Mikos, also director of the Center for Excellence in Tissue Engineering at Rice. “Infection can not only limit the ability of a medical device to perform, but it may also require the removal of the device itself. Depending on the extent of the infection, it can even lead to tissue necrosis—the death of previously healthy tissue.”

In their battle against the looming threat of infection, Mikos and his colleagues have come up with a solution—a unique way to deliver time-released antibiotics, warding off infection while a patient heals.

“Think of this as something that allows us to infuse a prefabricated implant with an antibiotic gel that would be slowly released after implantation,” Mikos said. “This would address any issues surrounding infection.”

For patients who have sustained a craniofacial injury, the lab’s prefabricated implants—essentially, specialized space maintainers—are designed to keep a pocket for new bone open while the overlaying soft tissue heals. In later surgery, the implant is removed to make way for reconstruction of the bone itself.

In this latest advance—the subject of a paper that appeared in the Royal Society of Chemistry journal Biomaterials Science in December—the space holders, known as porous polymethyl methacrylate (PMMA) implants, are filled with a gel that leaches its protective antibiotic contents to surrounding tissue. This protects the tissue from infection for at least several weeks.

“At the time of surgery, the physician can decide what kind of antibiotic they want to put into the implants by directly mixing it with the thermogel,” said Sarita Shah, one of the paper’s co-authors and a graduate student at Rice University and Baylor College of Medicine’s M.D./Ph.D. Medical Scientist Training Program (MSTP). “That gives the surgeon incredible flexibility.”

Led by Paschalia (Lina) Mountziaris, M.D., Ph.D., an MSTP alumna and post-doctoral fellow in Mikos’s lab, the researchers noted that infections from the external environment and from neighboring structures—such as nasal passages, sinuses and the mouth—can attack vulnerable tissue. Several studies have indicated wound infections from gunshot injuries to the face are common.

While researchers at Rice and elsewhere have experimented with porous implants previously, they are susceptible to invasion by infectious bacteria. The Mikos lab’s solution? Fill the pores at the point of care with a thermogel that infuses the spacer as a liquid and solidifies into a gel when exposed to body heat.

“PMMA can be thought of like a plastic,” Shah said. “It’s really there to maintain space. But by introducing the porosity into it, we’re able to make it a little bit rough on the outside. That roughness makes it easier for tissues to attach, so that when you put it into the mandible, the gums can attach—and stay attached—to it.”

The porosity of the PMMA space maintainer compounds with the special properties of the thermogel itself. It consists of a block copolymer, a self-assembling combination of two polymers that is also under investigation for the controlled release of chemotherapy drugs.

“Block copolymers can offer a lot of benefits since they are designed to take advantage of the strengths of individual polymers,” Mikos said. “The block copolymer we used for our study was designed to be able to take on water, become a gel at body temperature and slowly degrade over the course of implantation.”

According to Mikos, soldiers are at particular risk for infection, as battlefield injuries are often susceptible to multidrug-resistant species of bacteria that invade between the time of injury and treatment.

“The technology was designed to address problems in infected wounds of soldiers coming back from Iraq and Afghanistan,” Mikos said. “What we’re trying to do in our laboratory, in collaboration with colleagues at The University of Texas Health Science Center (UTHealth), is to develop materials and technologies that will enable us to regenerate composite tissue defects that are infected.”

The project is part of a $75 million, five-year Armed Forces Institute of Regenerative Medicine grant to Rice, UTHealth and collaborating institutions to develop technologies to not only treat soldiers on the battlefield, but advance care for the public, as well.

“Right now, the people that this would be useful for in a non-military setting would be individuals who have either cancerous tumors or benign cysts of the jaw—because those are very defined resections,” Shah added. “In addition, cancer patients may also get radiation treatment along with the resection, which also makes them prone to infection. This would be a great advance for that kind of reconstruction.”




Social Posts

profile_image

Rice University

@RiceUniversity

The @GlasscockSchool's fall course catalog is chock-full of offerings for ever-curious learners, including classes in the humanities and sciences, foreign languages and personal and professional development. https://t.co/A793BrcLfz https://t.co/8a1K8LbHE2

36 mins ago
profile_image

Veterans Affairs

@DeptVetAffairs

Last Shasta County Navy Veteran who survived Pearl Harbor attack laid to rest https://t.co/lc5ODzbk9l via @JimSchultz_RS

1 hour ago
profile_image

BCMHouston

@bcmhouston

One internal medicine resident looks back at a time where a patient helped him realize the balance of overly identifying with patients and complete detachment. https://t.co/7xsFWEhVc4

1 hour ago
profile_image

Veterans Affairs

@DeptVetAffairs

Santa Clarita Air Force Veteran Launches Campaign For Web Series To Depict Modern Soldier Life https://t.co/Td0ds3jxue via @KHTSRADIO

2 hours ago
profile_image

Veterans Affairs

@DeptVetAffairs

Today’s #VeteranOfTheDay is @USArmy Veteran Stanley Nelson. https://t.co/SHml8yEysj

2 hours ago
profile_image

U.S. Department of Veterans Affairs

VeteransAffairs

Today’s #VeteranOfTheDay is Army Veteran Stanley Nelson. Stanley served from 1949 to 1952.Stanley, from Otwell, Indiana in Pike County, joined the Army in 1949 and completed training at Fort Knox. He was sent to Japan and in 1950 was assigned to the 8th Engineer Combat Battalion, 1st Calvary in Korea during the Korean War. On February 14, 1951, Stanley was defending the flank of advancing soldiers near Chipyong in modern-day South Korea. He was wounded by small arms fire in the right shoulder, right foot, left leg and left foot. Stanley was left incapacitated and was captured by the enemy.Stanley endured torture and difficult conditions while held prisoner and was left to die. However, American forces discovered him and evacuated him for medical treatment. The lower part of Stanley’s leg was amputated the following month and he recovered at Percy James Army Hospital in Battle Creek, Michigan. He was medically retired on January 31, 1952.Thank you for your service, Stanley!

2 hours ago
profile_image

UTHealth

@UTHealth

Thank you @MBThewoodlands for supporting student scholarships at @MDA_UTHGrad! It also is hosting our next House Calls web chat on sports medicine this Thursday, July 19, at 6:30 p.m. CST at https://t.co/N5UU1Jx4pq. Submit a question for our experts by using #UTHealthHouseCalls.

3 hours ago
profile_image

UTHealth

@UTHealth

RT @abc13houston: The most common sports injuries are strains and sprains, but do you know when you might need to see a doctor? The experts…

3 hours ago
profile_image

BCMHouston

@bcmhouston

RT @BCMHouston_News: Tune in to @FOX26Houston tomorrow in the 8 am hour to hear @bcmhouston's Dr. El-Serag discuss the recent CDC report on…

4 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

#Cancerpain can be related to the disease and treatment. Hear from Dr. Salahadin Abdi on how patients can find relief. #endcancer https://t.co/snFVjDUjNe

4 hours ago
profile_image

TexasHeartInstitute

@Texas_Heart

RT @HealthyWomen: 10 Sneaky Ways to Get Fruits and Veggies in Your #Diet: https://t.co/wJ9x39147k #health https://t.co/EWktCmct2J

4 hours ago
profile_image

BCMHouston

@bcmhouston

RT @BCMHouston_News: Certain nail products can cause allergic reactions or irritations. @bcmhouston's Dr. Katta shares what to look out for…

5 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

@ParrotsMatter @TargetedOnc @michaelwangmd Hi, yes we are. Here's a list of current clinical trials: https://t.co/JgHpaIKBbX. Best wishes to you.

5 hours ago
profile_image

MD Anderson Cancer Center

@MDAndersonNews

RT @MDAndersonTrial: A phase I/Ib study of concurrent intravenous and intrathecal nivolumab for patients with leptomeningeal disease (LMD)…

5 hours ago
profile_image

Rice University

@RiceUniversity

RT @RiceAthletics: To celebrate #WorldEmojiDay, check out our favorite mascot @SammyTheOwl! 🦉👐 https://t.co/ebIKcsu2Z9

5 hours ago